Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurophotonics ; 11(2): 024203, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38348359

ABSTRACT

The use of bioluminescence as a reporter for physiology in neuroscience is as old as the discovery of the calcium-dependent photon emission of aequorin. Over the years, luciferases have been largely replaced by fluorescent reporters, but recently, the field has seen a renaissance of bioluminescent probes, catalyzed by unique developments in imaging technology, bioengineering, and biochemistry to produce luciferases with previously unseen colors and intensity. This is not surprising as the advantages of bioluminescence make luciferases very attractive for noninvasive, longitudinal in vivo observations without the need of an excitation light source. Here, we review how the development of dedicated and specific sensor-luciferases afforded, among others, transcranial imaging of calcium and neurotransmitters, or cellular metabolites and physical quantities such as forces and membrane voltage. Further, the increased versatility and light output of luciferases have paved the way for a new field of functional bioluminescence optogenetics, in which the photon emission of the luciferase is coupled to the gating of a photosensor, e.g., a channelrhodopsin and we review how they have been successfully used to engineer synthetic neuronal connections. Finally, we provide a primer to consider important factors in setting up functional bioluminescence experiments, with a particular focus on the genetic model Caenorhabditis elegans, and discuss the leading challenges that the field needs to overcome to regain a competitive advantage over fluorescence modalities. Together, our paper caters to experienced users of bioluminescence as well as novices who would like to experience the advantages of luciferases in their own hand.

2.
Nat Methods ; 20(5): 761-769, 2023 05.
Article in English | MEDLINE | ID: mdl-37024651

ABSTRACT

Neuronal computation is achieved through connections of individual neurons into a larger network. To expand the repertoire of endogenous cellular communication, we developed a synthetic, photon-assisted synaptic transmission (PhAST) system. PhAST is based on luciferases and channelrhodopsins that enable the transmission of a neuronal state across space, using photons as neurotransmitters. PhAST overcomes synaptic barriers and rescues the behavioral deficit of a glutamate mutant with conditional, calcium-triggered photon emission between two neurons of the Caenorhabditis elegans nociceptive avoidance circuit. To demonstrate versatility and flexibility, we generated de novo synaptic transmission between two unconnected cells in a sexually dimorphic neuronal circuit, suppressed endogenous nocifensive response through activation of an anion channelrhodopsin and switched attractive to aversive behavior in an olfactory circuit. Finally, we applied PhAST to dissect the calcium dynamics of the temporal pattern generator in a motor circuit for ovipositioning. In summary, we established photon-based synaptic transmission that facilitates the modification of animal behavior.


Subject(s)
Calcium , Photons , Animals , Neurons/physiology , Synaptic Transmission , Caenorhabditis elegans/physiology
3.
Commun Biol ; 5(1): 1330, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463346

ABSTRACT

Bioluminescence microscopy is an appealing alternative to fluorescence microscopy, because it does not depend on external illumination, and consequently does neither produce spurious background autofluorescence, nor perturb intrinsically photosensitive processes in living cells and animals. The low photon emission of known luciferases, however, demands long exposure times that are prohibitive for imaging fast biological dynamics. To increase the versatility of bioluminescence microscopy, we present an improved low-light microscope in combination with deep learning methods to image extremely photon-starved samples enabling subsecond exposures for timelapse and volumetric imaging. We apply our method to image subcellular dynamics in mouse embryonic stem cells, epithelial morphology during zebrafish development, and DAF-16 FoxO transcription factor shuttling from the cytoplasm to the nucleus under external stress. Finally, we concatenate neural networks for denoising and light-field deconvolution to resolve intracellular calcium dynamics in three dimensions of freely moving Caenorhabditis elegans.


Subject(s)
Deep Learning , Animals , Mice , Zebrafish , Cytoplasm , Cell Nucleus , Microscopy, Fluorescence , Caenorhabditis elegans
4.
J Chem Phys ; 152(7): 074304, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32087656

ABSTRACT

Transport phenomena in organic, self-assembled molecular J-aggregates have long attracted a great deal of attention due to their potential role in designing novel organic photovoltaic devices. A large number of theoretical and experimental studies have been carried out describing excitonic energy transfer in J-aggregates under the assumption that excitons are induced by a coherent laser-light source or initialized by a localized excitation on a particular chromophore. However, these assumptions may not provide an accurate description to assess the efficiency of J-aggregates, particularly as building blocks of organic solar cells. Under natural conditions, J-aggregates would be subjected to an incoherent source of light (as is sunlight), which would illuminate the whole photosynthetic complex rather than a single molecule. In this work, we present the first study of the efficiency of photosynthetic energy transport in self-assembled molecular aggregates under incoherent sunlight illumination. By making use of a minimalistic model of a cyanine dye J-aggregate, we demonstrate that long-range transport efficiency is enhanced when exciting the aggregate with incoherent light. Our results thus support the conclusion that J-aggregates are, indeed, excellent candidates for devices where efficient long-range incoherently induced exciton transport is desired, such as in highly efficient organic solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...